Generalized Golub-Kahan Bidiagonalization and Stopping Criteria

نویسنده

  • Mario Arioli
چکیده

The Golub–Kahan bidiagonalization algorithm has been widely used in solving leastsquares problems and in the computation of the SVD of rectangular matrices. Here we propose an algorithm based on the Golub–Kahan process for the solution of augmented systems that minimizes the norm of the error and, in particular, we propose a novel estimator of the error similar to the one proposed by Hestenes and Stiefel for the conjugate gradient method and later developed by Golub, Meurant, and Strakoš. This estimator gives a lower bound for the error, and can be used as a stopping criterion for the whole process. We also propose an upper bound of the error based on Gauss–Radau quadrature. Finally, we show how we can transform augmented systems arising from the mixed finite-element approximation of partial differential equations in order to achieve a convergence rate independent of the finite dimensional problem size.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation

In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...

متن کامل

Approximating the leading singular triplets of a large matrix function

Given a large square matrix A and a sufficiently regular function f so that f(A) is well defined, we are interested in the approximation of the leading singular values and corresponding singular vectors of f(A), and in particular of ‖f(A)‖, where ‖ · ‖ is the matrix norm induced by the Euclidean vector norm. Since neither f(A) nor f(A)v can be computed exactly, we introduce and analyze an inexa...

متن کامل

Computation of Generalized Matrix Functions

We develop numerical algorithms for the efficient evaluation of quantities associated with generalized matrix functions [J. B. Hawkins and A. Ben-Israel, Linear and Multilinear Algebra, 1(2), 1973, pp. 163–171]. Our algorithms are based on Gaussian quadrature and Golub–Kahan bidiagonalization. Block variants are also investigated. Numerical experiments are performed to illustrate the effectiven...

متن کامل

Band Generalization of the Golub-Kahan Bidiagonalization, Generalized Jacobi Matrices, and the Core Problem

The concept of the core problem in total least squares (TLS) problems was introduced in [C. C. Paige and Z. Strakoš, SIAM J. Matrix Anal. Appl., 27, 2006, pp. 861–875]. It is based on orthogonal transformations such that the resulting problem decomposes into two independent parts, with one of the parts having trivial (zero) right-hand side and maximal dimensions, and the other part with nonzero...

متن کامل

Householder Symposium XVIII on Numerical Linear Algebra

s 6 Awad H. Al-Mohy An Improved Algorithm for the Matrix Logarithm . . . . . . . . . . . . . . . . . . . . 7 David Amsallem Interpolation on Matrix Manifolds of Reduced-Order Models and Application to On-Line Aeroelastic Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Athanasios C. Antoulas Model Reduction of Parameter-Dependent Systems . . . . . . . . . . . . . . . . . . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2013